Learning Bayesian Networks without Assuming Missing at Random

نویسندگان

  • Tameem Adel
  • Cassio Polpo de Campos
چکیده

We present new algorithms for learning Bayesian networks from data with missing values using a data augmentation approach. An exact Bayesian network learning algorithm is obtained by recasting the problem into a standard Bayesian network learning problem without missing data. To the best of our knowledge, this is the first exact algorithm for this problem. As expected, the exact algorithm does not scale to large domains. We build on the exact method to create an approximate algorithm using a hill-climbing technique. This algorithm scales to large domains so long as a suitable standard structure learning method for complete data is available. We perform a wide range of experiments to demonstrate the benefits of learning Bayesian networks with such new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Learning Bayesian Networks from Incomplete Data

Much of the current research in learning Bayesian Networks fails to eeectively deal with missing data. Most of the methods assume that the data is complete, or make the data complete using fairly ad-hoc methods; other methods do deal with missing data but learn only the conditional probabilities, assuming that the structure is known. We present a principled approach to learn both the Bayesian n...

متن کامل

Learning Bayesia Networks from Incorn

Much of the current research in learning Bayesian Networks fails to effectively deal with missing data. Most of the methods assume that the data is complete, or make the data complete using fairly ad-hoc methods; other methods do deal with missing data but learn only the conditional probabilities, assuming that the structure is known. We present a principled approach to learn both the Bayesian ...

متن کامل

Learning Bayesian Networks with Incomplete Data by Augmentation

We present new algorithms for learning Bayesian networks from data with missing values using a data augmentation approach. An exact Bayesian network learning algorithm is obtained by recasting the problem into a standard Bayesian network learning problem without missing data. As expected, the exact algorithm does not scale to large domains. We build on the exact method to create an approximate ...

متن کامل

A Bayesian approach to error concealment in encoded video streams

In ATM networks cell loss causes data to be dropped in the channel. When digital video is transmitted over these networks one must be able to reconstruct the missing data so that the impact of these errors is minimized. In this paper we describe a Bayesian approach to conceal these errors. Assuming that the digital video has been encoded using the MPEG1 or MPEG2 compression scheme, each frame i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.07734  شماره 

صفحات  -

تاریخ انتشار 2016